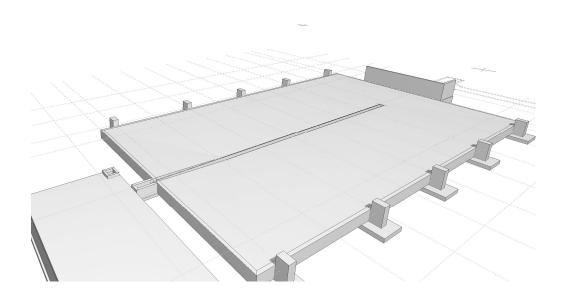
85107 Baar-Ebenhausen

Seite: 1 von 4 Datum: 29.05.2018

Revision: 1


BERECHNUNGEN ZUM STÜCKGUTABSTELLFLÄCHEN S29 UND L21

1 Lagerkapazität der Stückgutabstellfläche.

Lagerkapazität : 750 Tonnen

Auffangvolumen der Wanne: 3% von 750 t = 22,50 t \approx 22,50 m³

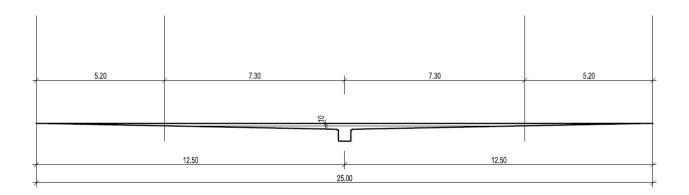
Erforderlicher Volumen VE = 22,50 m³

2 Berechnung des Rückhaltevolumens der Wannen.

L = 46,00 m

B = 25,00 m

Fläche = $46,00 \text{ m} \times 25,00 \text{ m} = 1.150,00 \text{ m}^2$


Höhe der Auslaufrinne: -0,10 m Oberkante Wanne = ±0.00m

85107 Baar-Ebenhausen

Seite: 2 von 4 Datum: 29.05.2018

Revision:

Querschnitt - Wanne

Fläche der Auffangwanne:

A1 = Grundfläche (Auffangwanne)

A2 = Grundfläche (Rinne)

Ab dem Rand der Wanne 5,20 m zum Innen-Bereich.

A1 = (46,00 m - 10,40 m) x (25,00 m - 10,40 m)

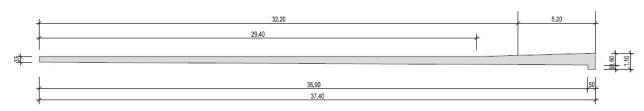
 $A1 = 519,76 \text{ m}^2$

Fläche der Rinne:

L = 32,20 m

B = 0.50 m

 $A2 = 16,10 \text{ m}^2$


Europaletten:

Fläche = $1,20 \text{ m} \times 1,00 \text{ m} = 1,20 \text{ m}^2$

Auf einer Fläche von 519,76 m² werden (20 x 12) Paletten gelagert.

 $20 \times 12 = 240 \text{ Paletten}$

240 x 1,20 m² = 288 m²

Langschnitt Rinne

Ridlerstr. 31c, 80339 München

85107 Baar-Ebenhausen

Seite: 3 von 4 Datum: 29.05.2018

Revision: 1

Oberkante Wanne = ± 0.00 m ober Kante Rinne = -0.24 m Einlauf = -0.10m

H = 0.24 m - 0.10 = 0.14 m

H = 0.14 m

 $A1 = 519,76 - 288 = 231,76 \text{ m}^2$

 $A1 = 231,76 \text{ m}^2$

Paletten auf der Oberfläche der Rinne

 $21 \times (0.35 \times 1.20) = 8.82 \text{ m}^2$

 $A2 = 16,10 - 8,82 = 7,28 \text{ m}^2$

 $A2 = 7,28 \text{ m}^2$

Volumen der Wanne (Die Formel zur Berechnung - Pyramidenstumpf):

 $V = H/3 \times (A1 + A2 + Wurzel (A1 \times A2))$

 $V = 0.14/3 \times (231.76 + 7.28 + (Wurzel (231.76 \times 7.28))$

 $V = 0.14/3 \times (231.76 + 7.28 + 41.08)$

V= 0,14/3 x 280,12

 $V = 13,07 \text{ m}^3$

Volumen der Rinne:

L = 37,40 m

B = 0.50 m

H1 = 0.37 m

H2 = 0.70 m

L (Rinne) = 37,40 - 0,50 = 36,90 m

Fläche der Rinne:

A (Rinne) = $(H1 + H2)/2 \times 36,90$

A (Rinne) = $(0.37 + 0.70)/2 \times 36.90$

A (Rinne) = $19,74 \text{ m}^2$

 $V(Rinne) = 19,74 \times 0,50$

 $V(Rinne) = 9,87 \text{ m}^3$

Pumpensumpf Volumen:

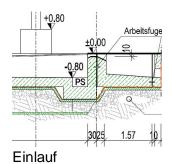
L = 0.50 m

B = 0.50 m

H = 1,00 m

 $V(Pumpensumpf) = 0.50 \times 0.50 \times 1.00$

 $V(Pumpensumpf) = 0.25 \text{ m}^3$


Ridlerstr. 31c, 80339 München

85107 Baar-Ebenhausen

Seite: 4 von 4 Datum: 29.05.2018

Revision: 1

Gesamt Volumen:

VG = V (Wanne) + V (Rinne) + V (Pumpensumpf)

VG = 13,07 + 9,87 + 0,25

 $VG = 23,19 \text{ m}^3$

Erforderlicher Volumen $VE = 22,50 \text{ m}^3$ Berechneter Volumen $VG = 23,19 \text{ m}^3$

Nachweis erbracht!

Ridlerstr. 31c, 80339 München